Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Statics and Influence Functions PDF full book. Access full book title Statics and Influence Functions by BE-STATIK. Download full books in PDF and EPUB format.
Book Description
This extended and revised second edition is intended for engineering students and researchers working with finite element methods in structural and mechanical analysis. Discussing numerical structural analysis from first mechanical and mathematical principles, it establishes the central role of influence functions (Green's functions) in linear computational mechanics. The main features of the book are mentioned below. · Introducing Green's first and second identity as the core theorems of statics and mechanics. Formulation of the variational and energy principles of mechanics with an emphasis on the computational aspects and on the qualitative features of variational solutions. · Derivation of influence functions from duality principles, the distinction between weak and strong influence functions, the difference between monopoles and dipoles and how amputated dipoles lead to singularities, and how singularities on the boundary pollute the solution inside the domain - an unavoidable effect in 2-D and 3-D. · A detailed discussion of the various features of the finite element method and the key role of the notion of "shake-equivalence" as originally introduced by Turner et alt. Establishing that in linear finite element analysis the accuracy depends on the accuracy of the influence functions. Introducing Betti extended as a core theorem of finite element analysis. · A systematic treatment of the role which Green's functions play in reanalysis, sensitivity analysis, parameter identification and in optimization. Explaining why averaging material parameters succeeds and how local stiffness changes can be identified with the action of equilibrium forces f+. · Presenting a new technique, one-click reanalysis, which allows to make modifications to a structure by clicking on single elements and seeing directly the new shape, bypassing the need to solve the modified system. · Four programs for the solution of the Poisson equation, 2-D elasticity, plate-bending problems and planar frames are offered for download in this second edition. These are all-purpose programs but with a particular emphasis on influence functions. The frame program also demonstrates one-click reanalysis.
Book Description
This extended and revised second edition is intended for engineering students and researchers working with finite element methods in structural and mechanical analysis. Discussing numerical structural analysis from first mechanical and mathematical principles, it establishes the central role of influence functions (Green's functions) in linear computational mechanics. The main features of the book are mentioned below. · Introducing Green's first and second identity as the core theorems of statics and mechanics. Formulation of the variational and energy principles of mechanics with an emphasis on the computational aspects and on the qualitative features of variational solutions. · Derivation of influence functions from duality principles, the distinction between weak and strong influence functions, the difference between monopoles and dipoles and how amputated dipoles lead to singularities, and how singularities on the boundary pollute the solution inside the domain - an unavoidable effect in 2-D and 3-D. · A detailed discussion of the various features of the finite element method and the key role of the notion of "shake-equivalence" as originally introduced by Turner et alt. Establishing that in linear finite element analysis the accuracy depends on the accuracy of the influence functions. Introducing Betti extended as a core theorem of finite element analysis. · A systematic treatment of the role which Green's functions play in reanalysis, sensitivity analysis, parameter identification and in optimization. Explaining why averaging material parameters succeeds and how local stiffness changes can be identified with the action of equilibrium forces f+. · Presenting a new technique, one-click reanalysis, which allows to make modifications to a structure by clicking on single elements and seeing directly the new shape, bypassing the need to solve the modified system. · Four programs for the solution of the Poisson equation, 2-D elasticity, plate-bending problems and planar frames are offered for download in this second edition. These are all-purpose programs but with a particular emphasis on influence functions. The frame program also demonstrates one-click reanalysis.
Book Description
The book teaches engineers many new things about a classical topic which suddenly is again in the center of interest because of its relevance for finite element analysis, for the accuracy of computational methods. It shows that influence functions play a fundamental role in the finite element analysis of structures and practically all of linear computational mechanics. It also strives to add new and important insights into modern structural analysis and into computational mechanics by establishing the central role of influence functions for the numerical analysis and to lay a new foundation to the energy and variational principles.
Book Description
The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "This is a nice book containing a wealth of information, much ofit due to the authors. . . . If an instructor designing such acourse wanted a textbook, this book would be the best choiceavailable. . . . There are many stimulating exercises, and the bookalso contains an excellent index and an extensive list ofreferences." —Technometrics "[This] book should be read carefully by anyone who isinterested in dealing with statistical models in a realisticfashion." —American Scientist Introducing concepts, theory, and applications, RobustStatistics is accessible to a broad audience, avoidingallusions to high-powered mathematics while emphasizing ideas,heuristics, and background. The text covers the approach based onthe influence function (the effect of an outlier on an estimater,for example) and related notions such as the breakdown point. Italso treats the change-of-variance function, fundamental conceptsand results in the framework of estimation of a single parameter,and applications to estimation of covariance matrices andregression parameters.
Book Description
""Analyzes a wide range of problem classes originating in applied mechanics, stressing the use of influence (Green's) functions in their analysis. Provides an extensive list of influence functions and matrices-several in print for the first time. Addresses areas such as fluid flow, acoustics, electromagnetism, heat transfer, and elasticity.
Book Description
This book is an introduction to the field of asymptotic statistics. The treatment is both practical and mathematically rigorous. In addition to most of the standard topics of an asymptotics course, including likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures, the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, which gives the book one of its unifying themes. This entails mainly the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. Thus, even the standard subjects of asymptotic statistics are presented in a novel way. Suitable as a graduate or Master's level statistics text, this book will also give researchers an overview of research in asymptotic statistics.
Book Description
Aspects of Robust Statistics are important in many areas. Based on the International Conference on Robust Statistics 2001 (ICORS 2001) in Vorau, Austria, this volume discusses future directions of the discipline, bringing together leading scientists, experienced researchers and practitioners, as well as younger researchers. The papers cover a multitude of different aspects of Robust Statistics. For instance, the fundamental problem of data summary (weights of evidence) is considered and its robustness properties are studied. Further theoretical subjects include e.g.: robust methods for skewness, time series, longitudinal data, multivariate methods, and tests. Some papers deal with computational aspects and algorithms. Finally, the aspects of application and programming tools complete the volume.
Book Description
This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.
Book Description
Statistics is strongly tied to applications in different scientific disciplines, and the most challenging statistical problems arise from problems in the sciences. In fact, the most innovative statistical research flows from the needs of applications in diverse settings. This volume is a testimony to the crucial role that statistics plays in scientific disciplines such as genetics and environmental sciences, among others. The articles in this volume range from human and agricultural genetic DNA research to carcinogens and chemical concentrations in the environment and to space debris and atmospheric chemistry. Also included are some articles on statistical methods which are sufficiently general and flexible to be applied to many practical situations. The papers were refereed by a panel of experts and the editors of the volume. The contributions are based on the talks presented at the Workshop on Statistics and the Sciences, held at the Centro Stefano Franscini in Ascona, Switzerland, during the week of May 23 to 28, 1999. The meeting was jointly organized by the Swiss Federal Institutes of Technology in Lausanne and Zurich, with the financial support of the Minerva Research Foundation. As the presentations at the workshop helped the participants recognize the po tential role that statistics can play in the sciences, we hope that this volume will help the reader to focus on the central role of statistics in the specific areas presented here and to extrapolate the results to further applications.
Book Description
ROBETH (written in ANSI FORTRAN 77) is a systematized collection of algorithms that allows computation of a broad class of procedures based on M- and high-breakdown point estimation, including robust regression, robust testing of linear hypotheses, and robust coveriances. This book describes the computational procedures included in ROBETH. Each chapter is organized into three parts: 1. An overview of the theoretical background for the statistical and numerical methods 2. A detailed description of the corresponding FORTRAN subroutines and of the numerical algorithms as they are implemented 3. The scripts of several examples concerning the use of ROBETH by means of the S-PLUS interface, including some examples of high-level S functions.
Book Description
Mathematical Statistics: Basic Ideas and Selected Topics, Volume II presents important statistical concepts, methods, and tools not covered in the authors’ previous volume. This second volume focuses on inference in non- and semiparametric models. It not only reexamines the procedures introduced in the first volume from a more sophisticated point of view but also addresses new problems originating from the analysis of estimation of functions and other complex decision procedures and large-scale data analysis. The book covers asymptotic efficiency in semiparametric models from the Le Cam and Fisherian points of view as well as some finite sample size optimality criteria based on Lehmann–Scheffé theory. It develops the theory of semiparametric maximum likelihood estimation with applications to areas such as survival analysis. It also discusses methods of inference based on sieve models and asymptotic testing theory. The remainder of the book is devoted to model and variable selection, Monte Carlo methods, nonparametric curve estimation, and prediction, classification, and machine learning topics. The necessary background material is included in an appendix. Using the tools and methods developed in this textbook, students will be ready for advanced research in modern statistics. Numerous examples illustrate statistical modeling and inference concepts while end-of-chapter problems reinforce elementary concepts and introduce important new topics. As in Volume I, measure theory is not required for understanding. The solutions to exercises for Volume II are included in the back of the book. Check out Volume I for fundamental, classical statistical concepts leading to the material in this volume.